Part Number Hot Search : 
721A2415 MUR16 MB891 HFS2N60S IRF37 MAX2530 RELAYS MCP6471
Product Description
Full Text Search
 

To Download AN6227FHN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ics for mobile communication 1 publication date: october 2002 sdm00006beb AN6227FHN single chip, transmission and reception ic for pdc overview the AN6227FHN is a transmission and recep- tion ic incorporating reception sleep function for a 1.5 ghz cellular telephone. features ? reception sleep function built-in ? ultra mini-type 4 mm 5 mm leadless package ? current consumption: at reception: 25 ma at transmission: 3.2 ma applications ? cellular telephone (1.5 ghz pdc) qfn024-p-0405a (lead-free package) unit: mm block diagram v cc1 txout gnd lo1 gnd (mod) lo2 rxbs gnd (rx) limout v cc2 v apc/bs i i q q 19 18 17 16 15 14 13 1 2 3 4 5 6 7 20 21 22 23 24 12 11 10 9 8 i o i o rssi i o i o rssiout lo3 rxin r0.30 (1.10) (5.00) (4.00) (1.10) 0.80 max. 24 20 19 13 12 8 7 1 3-c0.50 24 1 7 8 12 13 19 20 seating plane 4.00 0.10 0.20 0.06 0.60 0.10 3.00 0.10 5.20 0.10 4.20 0.10 0.20 0.10 (0.44) (0.15) (0.44) (0.77) (0.77) 0.10 0.50 m 0.10
AN6227FHN 2 sdm00006beb pin descriptions note) * 1: except for the operating ambient temperature and storage temperature, all ratings are for t a = 25 c. * 2: p d is the value at t a = 80 c without a heatsink. use this device within the range of allowable power dissipation referring to " technical data ? p d ? t a curves of qfn024-p-0405". absolute maximum ratings parameter symbol rating unit supply voltage v cc 4.2 v supply current i cc 60 ma power dissipation * 2 p d 125 mw operating ambient temperature * 1 t opr ? 30 to + 80 c storage temperature * 1 t stg ? 55 to + 125 c recommended operating range parameter symbol range unit supply voltage v cc 2.6 to 4.0 v electrical characteristics at t a = 25 c parameter symbol conditions min typ max unit current consumption i cctx lo1 = 178 mhz, ? 25 dbm ? 25 33 ma (transimisson) * 1 lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v sleep current * 1 i sltx no signal, v apc/bs 0.3 v ? 010 a pin no. symbol description 1 txlo1 tx local 1 input 2 gndmod tx modulator gnd 3 txlo2 tx local 2 4 rxbs rxbs 5 gndrx rx gnd 6 lmout limiter output 7 vcclim v cc limiter 8 rsout rssi output 9 rxloin rx local input 10 rxmxin rx mixer input 11 vccmix mixer v cc 12 mxout mixer output pin no. symbol description 13 lmdec1 limiter decouple 1 14 lmdec2 limiter decouple 2 15 lmin limiter input 16 gndout tx output gnd 17 txout tx output 18 vccout tx output v cc 19 vccmod tx modulator v cc 20 q-in q input 21 q-in q input 22 i-in i input 23 i-in i input 24 apc/bs apc/bs
AN6227FHN 3 sdm00006beb electrical characteristics at t a = 25 c (continued) parameter symbol conditions min typ max unit output level 1 * 1 p o1 lo1 = 178 mhz, ? 25 dbm ? 16 ? 13 ? dbm lo2 = 1 607 mhz, ? 18 dbm v apc = 2.3 v output level 2 * 1 p o2 lo1 = 178 mhz, ? 25 dbm ? 16 ? 13 ? dbm lo2 = 1 631 mhz, ? 18 dbm v apc = 2.3 v minimum output level * 1 p min lo1 = 178 mhz, ? 25 dbm ?? 50 ? 40 dbm lo2 = 1 619 mhz, ? 18 dbm v apc = 1.0 v current consumption (reception) *2 i ccrx no signal ? 3.2 4.5 ma reception sleep current * 2 i rxslp no signal, rxbs 0.3 v ?? 10 a mixer conversion gain * 2 g mx v mi = 60 db , sw1 = b (refer to 20 23 26 db " application circuit example"), excludes the filter loss of ? 7 db mixer maximum output v mx v mi = 105 db , sw1 = b (refer to 100 106 ? db amplitude * 2 " application circuit example"), excludes the filter loss of ? 7 db limiter voltage gain *2 g lm v li = 15 db 80 85 90 db limiter maximum output v lm v li = 80 db , 450 khz component 0.90 1.25 1.60 v[p-p] amplitude * 2 rssi output voltage 1 * 2 v s(1) v li = 0 db 0 0.23 0.6 v rssi output voltage 2 * 2 v s(2) v li = 115 db 2.31 2.6 2.91 v rssi reference output slope * 3 d s v s (v is ) = v s(1) + 0.12 v 1.39 1.8 2.19 v d s = v s (v is + 75 db ) ? v(v is ) rssi output slope variation 1 * 3 ? d s(1) ? d s(1) = 5 {v s (v is + 15 db ) ? 0.75 1 1.25 ? v s (v is )} /d s rssi output slope variation 2 * 3 ? d s(2) ? d s(2) = 5 {v s (v is + 30 db ) ? 0.75 1 1.25 ? v s (v is + 15 db )} /d s rssi output slope variation 3 * 3 ? d s(3) ? d s(3) = 5 {v s (v is + 45 db ) ? 0.75 1 1.25 ? v s (v is + 30 db )} /d s rssi output slope variation 4 * 3 ? d s(4) ? d s(4) = 5 {v s (v is + 60 db ) ? 0.75 1 1.25 ? v s (v is + 45 db )} /d s rssi output slope variation 5 * 3 ? d s(5) ? d s(5) = 5 {v s (v is + 75 db ) ? 0.75 1 1.25 ? v s (v is + 60 db )} /d s note) * 1: v cc1 = 3.0 v, iq signal amplitude: 0.18 v[p-p] (both phases), dc bias: 1.6 v, ( /4 qpsk-modulated [0000] continuous wave input. output frequency of p o1 : 1 429.0025 mhz, output frequency of p o2 : 1 453.0025 hz, output frequency of p min : 1 441.0025 mhz. output level is measured with a spectrum analyzer. setting of a spectrum analyzer: span = 20 khz, rbw = 300 hz, vbw = 30 hz, st = 5 s (when inputting /4 qpsk-modulated [0000] continuous wave as iq signal, the frequency for p o1 , p o2 and p min becomes lo frequency plus iq signal frequency, which leads to the above value.) lo input level is a setting value of signal source (output impedance 50 ? ) described in the " application circuit example".
AN6227FHN 4 sdm00006beb electrical characteristics at t a = 25 c (continued) note) (continued) * 2: unless otherwise specified: v cc2 = 3.0 v, rxbs = 2.5 v to 3.0 v, sw1 = a (refer to "  application circuit example"). v lo3 = 90 db : f = 129.55 mhz, v mi : f = 130 mhz, v li : f = 450 khz (input level of pin 15 is excluded the loss of the matching circuit and filter.) v mx and v lm are measured in high impedance. lo input level is a setting value of signal source (output impedance 50 ? ) described in the " application circuit example". * 3: v is is the input level v l1 at which the rssi output voltage becomes v s(1) + 0.12 v. ? design reference data unless otherwise specified, v cc1 = 3.0 v. lo input level is a setting value of signal source (output impedance 50 ? ) described in the " application circuit example". note) the characteristics listed below are theoretical values based on the ic design and are not guaranteed. parameter symbol conditions min typ max unit carrier leak suppression * 1 cl lo1 = 178 mhz, ? 25 dbm ?? 35 ? 25 dbc (flo2-flo1) lo2 = 1 619 mhz, ? 18dbm v apc = 2.3 v image leak suppression * 1 il lo1 = 178 mhz, ? 25 dbm ?? 35 ? 30 dbc lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v proximity spurious suppression * 1 du lo1 = 178 mhz, ? 25 dbm ?? 70 ? 65 dbc lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v base band distortion suppression * 1 bd lo1 = 178 mhz, ? 25 dbm ?? 40 ? 30 dbc lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v adjacent channel leak power bl1 lo1 = 178 mhz, ? 25 dbm ?? 45 ? 38 dbc suppression (30 khz detuning) * 2 lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v adjacent channel leak power bl2 lo1 = 178 mhz, ? 25 dbm ?? 70 ? 60 dbc suppression (50 khz detuning) * 2 lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v adjacent channel leak power bl3 lo1 = 178 mhz, ? 25 dbm ??? 65 dbc suppression (100 khz detuning) * 2 lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v apc variable width * 1 l apc lo1 = 178 mhz, ? 25 dbm 30 37 45 db lo2 = 1 619 mhz, ? 18 dbm v apc = 1.0 v to 2.3 v apc output level control s apc lo1 = 178 mhz, ? 25 dbm 37 46 55 db/v sensitivity * 1 lo2 = 1 619 mhz, ? 18 dbm v apc = 1.0 v/1.6 v in-band output level deviation * 1 ? p lo1 = 178 mhz, ? 25 dbm ? 1.5 ?+ 1.5 db lo2 = 1 607 mhz to 1 631 mhz, ? 18 dbm, v apc = 2.3 v
AN6227FHN 5 sdm00006beb terminal equivalent circuits pin no. equivalent circuit description i/o 1 txlo1: i input pin of quadrature modulator. 2 gndmod: ? gnd pin of phase shifter and modulator. make impedance low by widening the gnd pattern. 3 txlo2: i local input pin for up mixer. 4 rxbs: i on/off control pin for reception block. electrical characteristics at t a = 25 c (continued) ? design reference data (continued) unless otherwise specified, v cc1 = 3.0 v. lo input level is a setting value of signal source (output impedance 50 ? ) described in the " application circuit example". note) the characteristics listed below are theoretical values based on the ic design and are not guaranteed. parameter symbol conditions min typ max unit modulation precision * 3 evm lo1 = 178 mhz, ? 25 dbm ? 2.0 3.5 % [rms] lo2 = 1 619 mhz, ? 18 dbm v apc = 2.3 v note) * 1: iq signal amplitude: 0.18 v[p-p] (both phases), dc bias: 1.6 v, /4 qpsk-modulated [0000] continuous wave input. measure the suppression amount for output with a spectrum analyzer. setting of a spectrum analyzer: span = 20 khz, rbw = 300 hz, vbw = 30 hz, st = 5 s * 2: iq signal amplitude: 0.18 v[p-p] (both phases), dc bias: 1.6 v, /4 qpsk-modulated [pn9] continuous wave input. to be measured by a spectrum analyzer. (by using a leak power measurement function for an adjacent channel.) setting of a spectrum analyzer: span = 250 khz, rbw = 1 khz, vbw = 1 khz, st = 2 s * 3: iq signal amplitude: 0.18 v[p-p] (both phases), dc bias: 1.6 v, /4 qpsk-modulated [pn9] continuous wave input. the output level be measured by a spectrum analyzer. (by using a modulation precision measurement function.) 1 19 2 10 k ? 450 ? 450 ? 2 pf 2 pf 2 pf 2 pf 5 pf 7 k ? 1 k ? 1 k ? 5 pf 18 16 3 200 k ? 200 k ? 4 regulator regulator rxbs (v) reception block 0 to 0.3 off 2.5 to 3 on
AN6227FHN 6 sdm00006beb terminal equivalent circuits (continued) pin no. equivalent circuit description i/o 5 gndrx: ? gnd pin of reception system. make impedance low by widening the gnd pattern. 6 lmout: o output pin of limiter amplifier. 7 vcclim: ? v cc pin for if limiter amplifier rssi. 8 rsout: o rssi output pin. dc potential corresponding to input signal level of limiter amplifier is outputted. 9 rxloin: i local input pin for reception down mixer. 10 rxmxin: i input pin to 1st. if amplifier. input impedance is 2 k ? . 11 vccmix: ? v cc pin for reception down mixer. 12 mxout: o reception down-mixer output pin. 6 7 5 180 a 23 k ? 8 7 5 11.2 k ? 10 pf 5 k ? 5 k ? 9 11 5 10 11 5 1 k ? 1 k ? 12 11 5 360 a
AN6227FHN 7 sdm00006beb terminal equivalent circuits (continued) pin no. equivalent circuit description i/o 13, 14 pin 13: lmdec1; pin 14: lmdec2: ? de-coupling pin for feedback of limiter amplifier. connect an external capacitor to gnd. 15 lmin: i limiter amplifier input pin. input impedance is 2 k ? . 16 gndout: ? gnd pin for transmission up-mixer and rf output amplifier. 17 txout: o rf output pin from output amplifier circuit. 18 vccout: ? v cc pin for transmission up-mixer and rf output amplifier. 19 vccmod: ? v cc pin for phase shifter and quadrature modulator. 20 q-in: i q signal input pin. relation between dc bias and amplitude is as follows: input impedance is 100 k ? or more. 21 q-in: i q signal input pin. relation between dc bias and amplitude is as follows: input impedance is 100 k ? or more. 8 15 13 14 2 k ? 8.5 k ? 102 k ? 100 k ? 5 17 18 16 dc bias (v) amplitude (v[p-p]) 1.6 0.18 dc bias (v) amplitude (v[p-p]) 1.6 0.18 19 20 5 21 600 ? 3 pf 3 pf 3 pf 3 pf 200 ? 2 k ? 600 ? 200 ?
AN6227FHN 8 sdm00006beb terminal equivalent circuits (continued) pin no. equivalent circuit description i/o 22 i-in: i i signal input pin. relation between dc bias and amplitude is as follows: input impedance is 100 k ? or more. 23 i-in: i i signal input pin. relation between dc bias and amplitude is as follows: input impedance is 100 k ? or more. 24 apc/bc: i pin for use both as battery saving of transmission block and as power control of transmitting rf output. control with the following conditions: input impedance is 5 k ? or more. dc bias (v) amplitude (v[p-p]) 1.6 0.18 dc bias (v) amplitude (v[p-p]) 1.6 0.18 v apc (v) mode 0 to 0.3 off 1.0 to v cc on (apc control) 24 regulator (apc control) 200 k ? 10 k ? 3 k ? 19 23 5 22 600 ? 3 pf 3 pf 3 pf 3 pf 200 ? 2 k ? 600 ? 200 ? technical data 1. p d ? t a curves of qfn024-p-0405a p d ? t a power dissipation p d (w) 0.000 0 25 50 75 100 125 ambient temperature t a ( c) 0.700 0.660 0.600 0.500 0.400 0.300 0.200 0.279 0.100 independent ic without a heat shink r th(j-a) = 357.4 c/w mounted on standard board (glass epoxy: 50 mm 50 mm t 0.8 mm) r th(j-a) = 151.5 c/w
AN6227FHN 9 sdm00006beb technical data (continued) 2. main characteristics apc control voltage characteristics mixer characteristic v cc = 3.0 v, t a = ? 30 c, 25 c, 80 c, bs = v apc = v ar lo1 : 178 mhz, ? 25 dbm lo2 : 1 619 mhz, ? 18 dbm i, q : 0.18 v[p-p] (both phases) 1.6 v dc , /4, [0000] or using pn9 stages continuous wave. adjacent channel leak power suppression amount: acp 30 khz, acp 50 khz (dbc) proximity spurious suppression amount: du (dbc) output level p o (dbm) ? 110 03 2 1 apc control voltage (v) 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 90.00 20.00 10.00 0.00 ? 10.00 ? 20.00 ? 30.00 ? 40.00 ? 50.00 ? 60.00 ? 70.00 ? 80.00 acp 30 khz acp 50 khz du p o t a = 25 c t a = ? 30 c t a = 80 c mixer output level (db v) 0 ? 20 0 20 40 60 80 100 120 mixer input level (db v) 120 110 100 90 80 70 60 50 40 30 20 10 t a = ? 30 c, 25 c, 80 c v cc = 3.0 v, t a = ? 30 c, 25 c, 80 c mixer in: 130 mhz mixer out: 450 khz lo3 in: 129.55 mhz, 90 db v limiter amplifier characteristics rssi characteristic v cc = 3.0 v, t a = ? 30 c, 25 c, 80 c, bs = 2.5 v limiter in: 450 mhz, limiter out: 450 khz v cc = 3.0 v, t a = ? 30 c, 25 c, 80 c, bs = 2.5 v limiter in: 450 mhz, limiter out: 450 khz limiter amplifier output level (db v) 0 0 20 40 60 80 100 120 140 limiter amplifier input level (db v) 120 110 100 90 80 70 60 50 40 30 20 10 t a = ? 30 c t a = 80 c t a = 25 c rssi output power (v) 0.0 0 20 40 60 80 100 120 140 limiter amplifier input level (db v) 3.0 2.5 2.0 1.5 1.0 0.5 t a = ? 30 c, 25 c, 80 c
AN6227FHN 10 sdm00006beb application circuit example mixer out 3.3 f 3.3 f 1 000 pf 330 pf 330 pf 330 pf 330 pf 10 pf 2 200 pf 1 000 pf 100 pf 100 nf 15 nf 15 nf 450 khz filter 47 ? 47 ? 2.0 k ? 100 nf sw 1 a b 100 pf 1 000 pf 100 pf 1 000 pf 1 000 pf vs 25 f 100 pf 1 000 pf 33 nf 1.0 k ? v cc1 txout lo1 lo2 rxbs v lm limout v cc2 v apc/bs i i q q 19 18 17 16 15 14 13 1 2 3 4 5 6 7 20 21 22 23 24 12 11 10 9 8 i o i o rssi i o i o rssiout lo3 vmi
request for your special attention and precautions in using the technical information and semiconductors described in this material (1) an export permit needs to be obtained from the competent authorities of the japanese government if any of the products or technologies described in this material and controlled under the "foreign exchange and foreign trade law" is to be exported or taken out of japan. (2) the technical information described in this material is limited to showing representative characteris- tics and applied circuits examples of the products. it neither warrants non-infringement of intellec- tual property right or any other rights owned by our company or a third party, nor grants any license. (3) we are not liable for the infringement of rights owned by a third party arising out of the use of the product or technologies as described in this material. (4) the products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instru- ments and household appliances). consult our sales staff in advance for information on the following applications: ? special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. ? any applications other than the standard applications intended. (5) the products and product specifications described in this material are subject to change without notice for modification and/or improvement. at the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date product standards in advance to make sure that the latest specifications satisfy your requirements. (6) when designing your equipment, comply with the guaranteed values, in particular those of maxi- mum rating, the range of operating power supply voltage, and heat radiation characteristics. other- wise, we will not be liable for any defect which may arise later in your equipment. even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. (7) when using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged. (8) this material may be not reprinted or reproduced whether wholly or partially, without the prior written permission of matsushita electric industrial co., ltd. 2002 jul


▲Up To Search▲   

 
Price & Availability of AN6227FHN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X